Résumé Cours sur les nombres complexes (Partie 2)

PROF: ATMANI NAJIB 2ème BAC Sciences maths

NOMBRES COMPLEXES(2)

G) arguments et interpretations geometriques

Le plan complexe est rapporté à un repère orthonormé $\left(O; \overrightarrow{e_1}; \overrightarrow{e_2}\right)$ et Soient M et M' et A, B, C et D quatre points distincts dans le plan complexe d'affixes respectifs z, z', a, b, c et d on a :

1)
$$\left(\overline{\overrightarrow{OM}}; \overline{\overrightarrow{OM'}}\right) = \arg\left(\frac{z'}{z}\right) [2\pi]$$

2)
$$\left(\overrightarrow{\overline{e_1}; AB}\right) \equiv \arg(b-a)[2\pi]$$

$$(3)\left(\overline{\overrightarrow{AB}}; \overline{AC}\right) \equiv \arg\left(\frac{c-a}{b-a}\right) [2\pi]$$

4)
$$(\overline{\overrightarrow{AB};\overrightarrow{CD}}) \equiv \arg\left(\frac{d-c}{b-a}\right)[2\pi]$$

5) A(a), B(b) et C(c) sont alignés si et seulement si :

$$\arg\left(\frac{c-a}{b-a}\right) \equiv 0[2\pi]$$

6) A(a), B(b) et C(c) et D(d)

(AB)||(CD) si et seulement si :
$$\arg\left(\frac{a-b}{c-d}\right) \equiv 0[2\pi]$$

Ou
$$\arg\left(\frac{a-b}{c-d}\right) \equiv \pi \left[2\pi\right]$$

7)(AB)
$$\perp$$
(CD)ssi : $\arg\left(\frac{a-b}{c-d}\right) \equiv \frac{\pi}{2} [2\pi]$ ou $\arg\left(\frac{a-b}{c-d}\right) \equiv -\frac{\pi}{2} [2\pi]$

8)Soit (*C*) le cercle qui circonscrit le triangle *ABC*, le point *D* appartient au cercle (*C*)

si et seulement si:

$$(\overline{\overrightarrow{AB};\overrightarrow{AC}}) = (\overline{\overrightarrow{DB};\overrightarrow{DC}})[2\pi]$$
 ou $(\overline{\overrightarrow{AB};\overrightarrow{AC}}) = \pi - (\overline{\overrightarrow{DB};\overrightarrow{DC}})[2\pi]$

9) Les points A,B,C et D sont cocycliques si et seulement si $\frac{c-a}{b-a} \times \frac{b-d}{c-d} \in \mathbb{R}^*$

H) LA FORME EXPONENTIELLE D'UN COMPLEXE

NON NUL :1)Soit θ un réel on pose : $cos\theta + i sin\theta = e^{i\theta}$ Soit $z = [r, \theta]$ un complexe non nul, on a :

 $z = r(cos\theta + i sin\theta) = re^{i\theta}$ Cette écriture s'appelle la forme exponentielle

2) Soient $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$

a)
$$zz' = rr'e^{i(\theta + \theta')}$$
 b) $z'' = r''e^{in\theta}$ c) $\frac{1}{z'} = \frac{1}{r'}e^{-i\theta'}$

d)
$$\frac{z}{z'} = \frac{r}{r'}e^{i(\theta-\theta')}$$
 e) $\overline{z} = re^{-i\theta}$ f) $-z = re^{i(\pi+\theta)}$

g) Pour tout réel
$$\theta$$
 on a : $(re^{i\theta})^n = (r)^n re^{in\theta}$

d'où:
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta) \quad \forall n \in \mathbb{N} \ \forall \theta \in \mathbb{R}$$

(Formule de Moivre

h) Formule d'Euler : Pour tout réel θ on a :

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

 $(\forall (\alpha, \beta) \in \mathbb{R}^2$

$$e^{i\alpha} + e^{i\beta} = e^{i\left(\frac{\alpha}{2} + \frac{\beta}{2}\right)} \left(e^{i\left(\frac{\alpha}{2} - \frac{\beta}{2}\right)} + e^{-i\left(\frac{\alpha}{2} - \frac{\beta}{2}\right)} \right)$$

(Cette égalité nous permet de déterminer la forme trigonométrique de la somme de deux complexes de même module)

I) LES EQUATION DU SECOND DEGRE DANS $\mathbb C$:

1) Les équations de second degré

Soit dans \mathbb{C} l'équation $az^2 + bz + c = 0$ (*E*) où *a*, *b* et *c* sont des complexes avec $a \neq 0$ et soit $\Delta = b^2 - 4ac$ son discriminant

on a :Si $\Delta = 0$ alors l'équation (E) admet comme solution le complexe $z = -\frac{b}{2a}$

Si $\Delta \neq 0$ l'équation (E) admet comme solution les complexes $z_1 = \frac{-b + \delta}{2a}$ et $z_2 = \frac{-b - \delta}{2a}$ où δ une racine

Remarque : Si les coefficients a, bet c sont des réels et $\Delta < 0$ alors l'équation $az^2 + bz + c =$ admet deux racines complexes conjugué $z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

carrées de Δ

J) LES RACINES n-EME D'UN COMPLEXE NON NUL

1) Les racines n-ième de l'unité :

a)On appelle racine n-ième de l'unité tout complexe u qui

vérifie :
$$u^n = 1$$

b) L'unité admet n racines n-ème qui s'écrivent de la forme :

$$u_k = e^{\frac{2k\pi}{n}i}$$
 Où $k \in \{0,1,2,...,(n-1)\}$

2) Les racines n-ème d'un nombre complexe non nul.

Le nombre complexe non nul $a=re^{\theta i}$ admet n racines n - ϵme $(n\in\mathbb{N}*)$ differentes qui sont :

$$u_k = \sqrt[n]{r}e^{\frac{\theta + 2k\pi}{n}_i} \text{ où } k \in \{0,1,2,...,(n-1)\}$$

K) LES TRANSFORMATIONS DANS LE PLAN COMPLEXE.

1) La translation : Soit \vec{u} un vecteur de \mathcal{V}_2 tel que :

 $aff(\vec{u}) = a$; la Translation $t_{\vec{u}}$ transforme M(z) en M'(z')

si et seulement si :z' = z + a

Cette égalité s'appelle l'écriture complexe de la translation

 $t_{\vec{u}}$ de vecteur \vec{u} tel que $aff(\vec{u}) = a$

2) L'homothétie : l'homothétie de centre $\Omega(\omega)$ et de

Rapport k, admet une écriture complexe de la forme :

$$z'=kz+\omega(1-k)$$

3) La rotation : La rotation de centre $\Omega(\omega)$ et d'angle θ ,

admet une écriture complexe de la forme :

$$z' = (z - \omega)e^{\theta i} + \omega$$

L) Etude de la transformation qui transforme ${\pmb M}({\pmb z})$ en

M'(z') tel que: z'=az+b; $b \in \mathbb{C}$

1er cas: $\boldsymbol{a} = \mathbf{0}$

La transformation f est une constante, elle lie chaque point M(z) au point fixe B(b)

2eme cas: a = 1

f est la transformation qui transforme M(z) en

$$M'(z')$$
 tel que $z'=z+b$

Dans ce cas la transformation f est une translation de

vecteur \vec{u} tel que : $aff(\vec{u}) = b$

3éme cas : a ∈ \mathbb{R} – {0, 1}

$$f(M(z)) = M'(z') \iff z' = az + b$$

Soit : $\omega = \frac{b}{1-a}$ on a :Le point $\Omega(\omega)$ est un point invariant

par f et on a : $z' - \omega = a(z - \omega)$ qui se traduit par

 $\overrightarrow{\Omega M}' = a \overrightarrow{\Omega M}$ donc : f est l'homothétie de centre $\Omega(\omega)$ et

de rapport a où $\omega = \frac{b}{1-a}$

4éme cas : $\boldsymbol{a} \in \mathbb{C}$ et $|\boldsymbol{a}| = 1$

 $\omega = \frac{b}{1-a}$ on a : $\Omega(\omega)$ est un point invariant par f.

On pose $a = e^{\alpha i}$ où $\alpha \neq 2k\pi$ (car $\alpha \neq 1$)

 $z'-\omega=a\left(z-\omega\right)$ la transformation f est la rotation de

centre $\Omega(\omega = \frac{b}{1-a})$ et d'angle α .

5me cas : $\boldsymbol{a} \in \mathbb{C} - \mathbb{R}$

La transformation plane f qui transforme M(z) en

M'(z') tel que : z'=az+b est la composition de la rotation

R et de l'homothétie h; f = hoR où : 1) R est la rotation d'angle $\alpha \equiv arg(a)$ [2π] et de centre

 $\Omega(\omega)$ où $\omega = \frac{b}{|a|-a}$

2) h est l'homothétie rapport r = |a| et de

Centre O(0)

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

Bon courage