BARYCENTRES – EXERCICES CORRIGES

Exercice n°1.

Soit A et B deux points distincts. Dans chacun des cas suivants, justifier que le point G défini par l'égalité vectorielle donnée est le barycentre d'un système de points pondérés que l'on précisera

1)
$$2\overrightarrow{GA} + 3\overrightarrow{GB} = \overrightarrow{0}$$

2)
$$\overrightarrow{GA} = -5\overrightarrow{GB}$$

3)
$$\overrightarrow{AG} + \frac{1}{5} \overrightarrow{AB} = \overrightarrow{GB}$$

Exercice n°2. Si K est le barycentre d'un système de points pondérés (C,1),(B,-4), exprimer B comme le barycentre des points K et C avec des coefficients à déterminer

Exercice n°3.

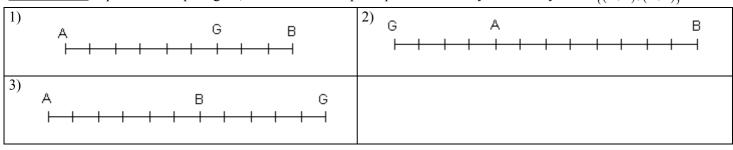
Soit A et B deux points distincts. Construire, s'ils existent, les barycentres des systèmes de points pondérés suivants.

1)
$$\{(A,-2);(B,5)\}$$

2)
$$\{(A,-3);(B,3)\}$$

3)
$$\left\{ \left(A, \frac{2}{3}\right); \left(B, -\frac{1}{4}\right) \right\}$$

Exercice n°4. A partir de chaque figure, déterminer a et b pour que G soit le barycentre du système $\{(A,a);(B,b)\}$

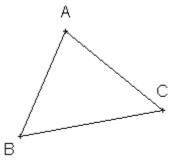


Exercice n°5.

Le triangle ABC étant donné ci-dessous, construire <u>le plus précisément possible</u> les deux barycentres donnés.

$$G = Bar\{(A,4);(B,3);(C,-1)\}$$

et
$$J = Bar \left\{ \left(A, \frac{1}{6} \right); \left(B, -\frac{1}{12} \right); \left(C, \frac{1}{4} \right) \right\}$$



Exercice n°6. Soit ABC est un triangle.

On définit les points H,K,L et G par :

H est le barycentre du système $\{(A,3);(B,2)\}$

K est le barycentre du système $\{(B,2);(C,-1)\}$

L est le barycentre du système $\{(A,3);(C,-1)\}$ G est le barycentre du système $\{(H,5);(C,-1)\}$

- 1) Démontrer que : $3\overrightarrow{GA} + 2\overrightarrow{GB} \overrightarrow{GC} = \overrightarrow{0}$
- 2) En déduire que :
- a) G est le milieu du segment [BL]
- b) G est le barycentre des points A et K affectés de coefficients que l'on déterminera

Exercice n°7.

On considère un triangle ABC, I le barycentre des points pondérés (A,2),(C,1), J le barycentre des points pondérés (A,1),(B,2), K le barycentre des points pondérés (C,1),(B,-4).

- 1) Exprimer B comme le barycentre des points K et C avec des coefficients à déterminer.
- 2) Déterminez le barycentre de (A,2),(K,3),(C,1).
- 3) Démontrer que le point J est le milieu de [IK].
- 4) Soit L le milieu de [CI] et M celui de [KC]. Déterminez a,b,c,d réels pour que L soit le barycentre de (A,a),(C,b) et M celui de (B,c),(C,d).

PROF: ATMANI NAJIB

Exercice n°8.

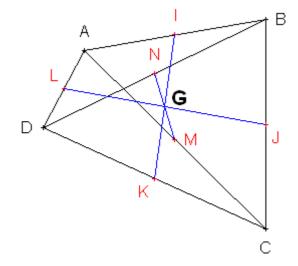
Soit ABCD un quadrilatère.

On note I,J,K,L,M et N les milieux respectifs de [AB], [BC], [CD], [DA], [AC] et [BD]

Soit G l'isobarycentre de ABCD.

Démontrer que G est le milieu de [IK], [MN] et [LJ].

Conclure



Exercice n°9.

ABCD est un rectangle tel que AB = 6

1) Déterminer et construire l'ensemble Γ_1 des points M

du plan tels que $\|2\overrightarrow{MA} + \overrightarrow{MB}\| = \|5\overrightarrow{MC} - 2\overrightarrow{MD}\|$

Démontrer que le milieu de [BC] appartient à Γ_1

2) Déterminer et construire l'ensemble Γ_2 des points M du plan tels que $\left\| 2\overline{MA} + \overline{MB} \right\| = 2AB$

Démontrer que le point B appartient à Γ_2

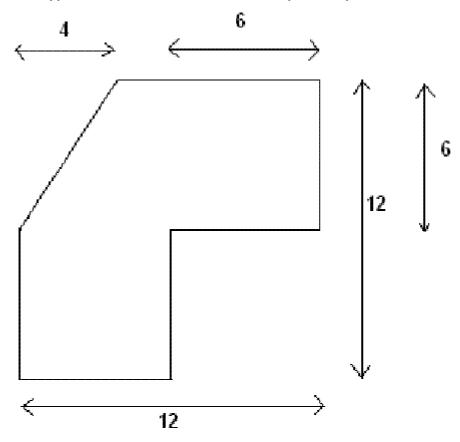
Exercice n°10.

Dans un repère orthonormé, on considère les points A(-1;2), B(3;1) et C(2;4).

Calculer les coordonnées du barycentre G du système (A;2), (B;-1) et (C;3)

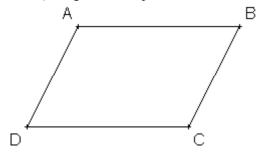
Exercice n°11.

Déterminer et placer le centre d'inertie de la plaque ci-dessous, supposée homogène et d'épaisseur négligeable On fera apparaître les traits de construction ainsi que les étapes intermédiaires



Exercices de synthèse :

<u>Exercice n°12.</u> Soient ABCD un parallélogramme et I le milieu de [AB]. Les droites (DB) et (CI) se coupent en un point noté G (La figure, à compléter, est donnée ci-dessous).



- 1) Montrer que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$
- 2) a) Construire le barycentre K du système de points pondérés (A; 1), (B; 1) et (C; -1)
- b) Montrer que K est aussi le barycentre du système de points pondérés (G; 3) et (C; -2)
- 3) a) Déduire de la relation (1) que A est le barycentre des points pondérés (D; 1), (G; 3) et (C; -2)
- b) Montrer que A est le milieu du segment [DK]
- 4) Déterminer et construire l'ensemble (E) des points M du plan tels que :

$$\|\overrightarrow{MD} + 3\overrightarrow{MG} - 2\overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\|$$

- 5) a) Pour quelle(s) valeur(s) du réel m le barycentre I_m du système (D, m), (G; 3) et (C; -2) existe-t-il?
- b) Lorsque I_m existe, montrer que : $\overrightarrow{DI_m} = \frac{1}{1+m}\overrightarrow{DK}$
- c) Étudier les variations de la fonction $x \to \frac{1}{1+x}$ et dresser son tableau de variations (on précisera ses limites aux bornes de son domaine de définition sans justification).
- d) En déduire le lieu géométrique du point I_m lorsque le réel décrit l'ensemble $\mathbb{R}\setminus\{-1\}$

Exercice n°13.

Dans le plan (P), on considère un triangle ABC isocèle en A, de hauteur [AH], telle que AH=BC=4, l'unité choisie étant le centimètre.

- 1) Construire, en justifiant, le point G barycentre du système de points pondérés $\{(A,2);(B,1);(C,1)\}$
- 2) M est un point quelconque de (P). Montrer que le vecteur $\vec{V} = 2 \overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}$ est un vecteur de norme 8
- 3) Déterminer et construire l'ensemble des points M du plan tels que $\|2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{V}\|$
- 4) On considère le système de points pondérés $\{(A,2);(B,n);(C,n)\}$ où n est un entier naturel fixé.
- a) Montrer que le barycentre G_n de ce système, existe quelle que soit la valeur de n
- b) Montrer que pour tout entier naturel n, G_n appartient à [AH]
- c) Soit Γ_n l'ensemble des points M du plan tels que $\|2\overline{MA} + n\overline{MB} + n\overline{MC}\| = n\|\vec{V}\|$. Montrer que Γ_n est un cercle contenant le point A, dont on précisera le centre et le rayon
- d) Déterminer la distance AG_n en fonction de n
- 5) Quel est le comportement de G_n lorsque n tend vers $+\infty$?

Exercice n°14.

Sur une droite D munie d'un repère $(O; \vec{i})$, A_0 et B_0 sont les points d'abscisses respectives -4 et 3. Pour tout entier naturel n, on note : A_{n+1} le barycentre de $(A_n, 1)$ et $(B_n, 4)$; B_{n+1} le barycentre de $(A_n, 3)$ et $(B_n, 2)$;

- 1) Placer les points A_0 , B_0 , A_1 , B_1
- 2) Les points A_n et B_n ont pour abscisses respectives a_n et b_n . Ainsi $a_0 = -4$ et $b_0 = 3$

Démontrer que pour tout n de \mathbb{N} , $a_{n+1} = \frac{1}{5}(a_n + 4b_n)$ et $b_{n+1} = \frac{1}{5}(3a_n + 2b_n)$

3) a) Démontrer, par récurrence, que pour tout entier naturel $n: 3a_n + 4b_n = 0$

b) En déduire que :
$$a_{n+1} = -\frac{2}{5}a_n$$
 et $b_{n+1} = -\frac{2}{5}b_n$

- 4) a) Exprimer a_n et b_n en fonction de n.
- b) Déterminer les limites de a_n et b_n quand n tend vers $+\infty$
- c) Interpréter ce résultat à l'aide des points A_n et B_n .

BARYCENTRES - CORRECTION

Exercice n°1

- 1) L'égalité vectorielle $2\overrightarrow{GA} + 3\overrightarrow{GB} = \overrightarrow{0}$ traduit exactement le fait que G est le barycentre du système $\{(A,2); (B,3)\}$ (c'est la définition!)
- 2) L'égalité vectorielle $\overrightarrow{GA} = -5\overrightarrow{GB}$ est équivalente à $\overrightarrow{GA} + 5\overrightarrow{GB} = \overrightarrow{0}$ qui traduit exactement le fait que G est le barycentre du système $\{(A,1);(B,5)\}$
- 3) L'égalité vectorielle $\overrightarrow{AG} + \frac{1}{5} \overrightarrow{AB} = \overrightarrow{GB}$ se transforme successivement en :

$$\overrightarrow{AG} + \frac{1}{5} \underbrace{\overrightarrow{AB}}_{\text{Relation}} = \overrightarrow{GB}$$

$$\Leftrightarrow \overrightarrow{AG} + \frac{1}{5} \underbrace{\overrightarrow{AG} + \overrightarrow{GB}}_{\text{de Chasles}} - \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AG} + \frac{1}{5} \overrightarrow{AG} + \frac{1}{5} \overrightarrow{GB} - \overrightarrow{GB} = \overrightarrow{0}$$

$$\Leftrightarrow \frac{6}{5} \overrightarrow{AG} - \frac{4}{5} \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow 5 \left(\frac{6}{5} \overrightarrow{AG} - \frac{4}{5} \overrightarrow{GB} \right) = 5 \times \overrightarrow{0}$$

$$\Leftrightarrow 6\overrightarrow{AG} - 4\overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow \frac{1}{2} \left(6\overrightarrow{AG} - 4\overrightarrow{GB} \right) = \frac{1}{2} \overrightarrow{0} \Leftrightarrow 3\overrightarrow{AG} - 2\overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow -3\overrightarrow{GA} - 2\overrightarrow{GB} = \overrightarrow{0}$$

qui traduit exactement le fait que G est le barycentre du système $\{(A,-3),(B,-2)\}$

Exercice n°2 Si K est le barycentre d'un système de points pondérés (C,1),(B,-4), alors on peut écrire : $\overrightarrow{KC} - 4\overrightarrow{KB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{KB} + \overrightarrow{BC} - 4\overrightarrow{KB} = \overrightarrow{0} \Leftrightarrow -3\overrightarrow{KB} + \overrightarrow{BC} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{BK} + \overrightarrow{BC} = \overrightarrow{0}$, qui traduit le fait que B est le barycentre du système $\{(K,3);(C,1)\}$

Exercice n°3 1) G barycentre de $\{(A,-2);(B,5)\}$ signifie que :

$$-2\overrightarrow{GA} + 5 \underbrace{\overrightarrow{GB}}_{\text{Relation}} = \overrightarrow{0}$$

$$\Leftrightarrow -2\overrightarrow{GA} + 5 \underbrace{(\overrightarrow{GA} + \overrightarrow{AB})}_{\text{de Chasles}} = \overrightarrow{0} \Leftrightarrow -2\overrightarrow{GA} + 5\overrightarrow{AB} = \overrightarrow{0}$$

$$\Leftrightarrow 3\overrightarrow{GA} + 5\overrightarrow{AB} = \overrightarrow{0}$$

$$\Leftrightarrow 3\overrightarrow{GA} = -5\overrightarrow{AB} \Leftrightarrow \overrightarrow{GA} = \frac{-5}{3} \overrightarrow{AB} \Leftrightarrow \overrightarrow{AG} = \frac{5}{3} \overrightarrow{AB}$$
D'où une construction du point G:

$2^{\text{ème}}$ méthode :

Si on sait que lorsque G est le barycentre d'un système $\{(A,\alpha);(B,\beta)\}$ (avec $\alpha+\beta\neq 0$), alors $\overrightarrow{AG} = \frac{\beta}{\alpha+\beta}\overrightarrow{AB}$, on peut écrire directement que G barycentre de $\{(A,-2);(B,5)\}$ signifie $\overrightarrow{AG} = \frac{5}{-2+5}\overrightarrow{AB} = \frac{5}{3}\overrightarrow{AB}$ (on retrouve le même résultat!)

- 2) Dans le deuxième cas, la somme des coefficients étant nulle, le barycentre du système $\{(A,-3);(B,3)\}$ n'existe pas. Inutile dessayer de le construire!
- 3) Pour construire le barycentre du système de points pondérés $\left\{ \left(A, \frac{2}{3} \right); \left(B, -\frac{1}{4} \right) \right\}$, on commence par multiplier les deux coefficients par 12 car l'égalité $\frac{2}{3}\overrightarrow{GA} \frac{1}{4}\overrightarrow{GB} = \vec{0}$ est équivalente à $12\left(\frac{2}{3}\overrightarrow{GA} \frac{1}{4}\overrightarrow{GB} \right) = 12 \times \vec{0} \Leftrightarrow 8\overrightarrow{GA} 3\overrightarrow{GB} = \vec{0}$

(De manière générale on peut multiplier tous les coefficients du système par un même réel non nul).

Ceci supprime les fractions, et rend le calcul vectoriel ou l'application de la formule $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$ plus aisée.

On trouve finalement $\overrightarrow{AG} = -\frac{3}{5}\overrightarrow{AB}$, ce qui nous permet de construire le point G : $\overrightarrow{AG} = -\frac{3}{5}\overrightarrow{AB}$

PROF: ATMANI NAJIB

Exercice n°4

Figure 1:

<u>1^{ère} méthode</u>: Sur la figure 1) on « lit » que $\overrightarrow{AG} = \frac{6}{9} \overrightarrow{AB}$, égalité vectorielle que l'on transforme successivement en :

$$\overrightarrow{AG} = \frac{6}{9} \overrightarrow{AB} \Leftrightarrow \overrightarrow{AG} = \frac{2}{3} \overrightarrow{AB} \Leftrightarrow 3\overrightarrow{AG} - 2\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{AG} - 2\left(\overrightarrow{AG} + \overrightarrow{GB}\right) = \overrightarrow{0}$$

$$\Leftrightarrow 3\overrightarrow{AG} - 2\overrightarrow{AG} - 2\overrightarrow{GB} = \vec{0} \Leftrightarrow \overrightarrow{AG} - 2\overrightarrow{GB} = \vec{0} \Leftrightarrow -\overrightarrow{GA} - 2\overrightarrow{GB} = \vec{0} \Leftrightarrow \overrightarrow{GA} + 2\overrightarrow{GB} = \vec{0}$$

qui traduit le fait que G est le barycentre du système $\{(A,1);(B,2)\}$

 $\frac{2^{\text{ème}} \text{ méthode}: }{\overrightarrow{AG}} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB} \text{ , on identifie sans difficulté, à partir de l'égalité } \overrightarrow{AG} = \frac{2}{3} \overrightarrow{AB} = \frac{2}{1+2} \overrightarrow{AB} \text{ les coefficients } \alpha = 1 \text{ et } \beta = 2 \text{ .}$

Figure 2: Sur la figure 2) on « lit » que $\overrightarrow{AG} = -\frac{1}{2}\overrightarrow{AB}$

Ou on procède par identification, en remarquant que $\overrightarrow{AG} = \frac{-1}{3 + (-1)} \overrightarrow{AB}$, d'où $\alpha = 3$ et $\beta = -1$,

ou on « se lance » dans les égalités vectorielles :

$$\overrightarrow{AG} = -\frac{1}{2}\overrightarrow{AB} \Leftrightarrow 2\overrightarrow{AG} = -\overrightarrow{AB} \Leftrightarrow 2\overrightarrow{AG} + \overrightarrow{AB} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{AG} + \overrightarrow{AG} + \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{AG} + \overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow -3\overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{0}$$

donc G est le barycentre du système $\{(A,-3);(B,1)\}$ ou encore du système $\{(A,(-3)\times(-1));(B,1\times(-1))\}$, c'est-à-dire du système $\{(A,3);(B,-1)\}$ (car on peut multiplier tous les coefficients du système par un même réel non nul).

On retrouve bien le même résultat

Figure 3: L'observation de la figure 3) conduit à remarquer que on « lit » que $\overrightarrow{AG} = \frac{11}{6} \overrightarrow{AB}$

Par identification, $\overrightarrow{AG} = \frac{11}{-5+11} \overrightarrow{AB}$, donc $\alpha = -5$ et $\beta = 11$.

Par égalités vectorielles,

$$\overrightarrow{AG} = \frac{11}{6} \overrightarrow{AB} \Leftrightarrow 6\overrightarrow{AG} - 11\overrightarrow{AB} = \overrightarrow{0} \Leftrightarrow 6\overrightarrow{AG} - 11\overrightarrow{AG} - 11\overrightarrow{GB} = \overrightarrow{0}$$

$$\Leftrightarrow -5\overrightarrow{AG} - 11\overrightarrow{GB} = \overrightarrow{0} \Leftrightarrow 5\overrightarrow{GA} - 11\overrightarrow{GB} = \overrightarrow{0}$$

donc G est le barycentre du système $\{(A,5);(B,-11)\}$ ou encore du système $\{(A,-5);(B,11)\}$,

Exercice n°5

Pour construire le barycentre d'un système de trois points pondérés, il faut regrouper deux d'entre eux au sein d'un « système partiel », en construire le « barycentre partiel », puis remplacer ce système par son barycentre affecté de la somme des coefficients. Autrement dit,

1) Soit $G = Bar\{(A,4); (B,3); (C,-1)\}$ le point à construire.

Si on note $H = Bar\{(A,4);(C,-1)\}$, qui est défini par $\overrightarrow{AH} = -\frac{1}{3}\overrightarrow{AC}$ (construction ci-dessous), alors :

$$G = Bar\{(A,4);(B,3);(C,-1)\}$$

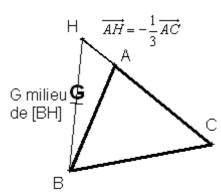
$$= Bar\{(H,4-1);(B,3)\}$$

$$= Bar\{(H,3);(B,3)\}$$

$$= Bar\{(H,1);(B,1)\}$$

c'est-à-dire G milieu de [HB].

On a ainsi construit le point G grâce au barycentre partiel H



2) Pour construire le barycentre $J = Bar\left\{\left(A, \frac{1}{6}\right); \left(B, -\frac{1}{12}\right); \left(C, \frac{1}{4}\right)\right\}$, on commence par multiplier tousles coefficients par

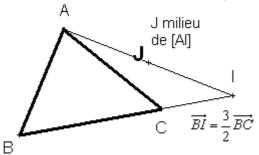
12: $J = Bar\{(A,2);(B,-1);(C,3)\}$. On regroupe les deux derniers points en posant $I = Bar\{(B,-1);(C,3)\}$, c'est-à-dire

$$\overrightarrow{BI} = \frac{3}{2} \overrightarrow{BC}$$
 (construction ci-contre),
Ensuite, il vient

$$J = Bar\{(A,2); (B,-1); (C,3)\}$$

$$= Bar\{(A,2);(I,2)\} = Bar\{(A,1);(I,1)\}$$

donc J est le milieu de [AI]



Exercice n°6

Si H est le barycentre du système
$$\{(A,3);(B,2)\}$$
, alors $\overrightarrow{AH} = \frac{2}{3}\overrightarrow{AB}$

Si K est le barycentre du système
$$\{(B,2);(C,-1)\}$$
, alors $\overrightarrow{BK} = -\overrightarrow{BC}$

Si L est le barycentre du système
$$\{(A,3);(C,-1)\}$$
, alors $\overrightarrow{AL} = -\frac{1}{2}\overrightarrow{AC}$

Si G est le barycentre du système
$$\{(H,5); (C,-1)\}$$
, alors $\overrightarrow{HG} = -\frac{1}{4}\overrightarrow{HC}$

1) Pour montrer que $3\overrightarrow{GA} + 2\overrightarrow{GB} - \overrightarrow{GC} = \overrightarrow{0}$, deux méthodes (au moins!) sont possibles:

<u>1^{ère} méthode :</u> « calculs vectoriels » :

$$3\overrightarrow{GA} + 2\overrightarrow{GB} - \overrightarrow{GC}$$

$$=3\left(\overrightarrow{GH}+\overrightarrow{HA}\right)+2\left(\overrightarrow{GH}+\overrightarrow{HB}\right)-\left(\overrightarrow{GH}+\overrightarrow{HC}\right)$$

$$=\underbrace{3\overrightarrow{GH}+2\overrightarrow{GH}-\overrightarrow{GH}}_{4\overrightarrow{GH}}+\underbrace{3\overrightarrow{HA}+2\overrightarrow{HB}}_{\text{car }H=Bar\{(A,3);(B,2)\}}-\overrightarrow{HC}$$

$$=4\overrightarrow{GH}-\overrightarrow{HC}$$

$$=\overrightarrow{0}$$
 car $\overrightarrow{HG} = -\frac{1}{4}\overrightarrow{HC} \Leftrightarrow \overrightarrow{GH} = \frac{1}{4}\overrightarrow{HC}$

<u>2^{ème} méthode</u>: En utilisant la technique dite des « barycentres partiels », on écrit :

$$G = Bar \left\{ \underbrace{(H,5)}_{\text{car}} \quad ; (C,-1) \right\}$$

$$= Bar \left\{ \overbrace{(A,3);(B,2)}^{H=Bar((A,3);(B,2))};(C,-1) \right\}$$

ce qui permet de conclure directement que $3\overrightarrow{GA} + 2\overrightarrow{GB} - \overrightarrow{GC} = \overrightarrow{0}$ (c'est la définition!)

2) Puisque L est le barycentre du système $\{(A,3); (C,-1)\}$, on écrit

$$G = Bar\{(A,3); (B,2); (C,-1)\}$$

$$= Bar\{(L,3-1);(B,2)\}$$

$$= Bar\{(L,2);(B,2)\} = Bar\{(L,1);(B,1)\}$$

donc G est le milieu du segment [BL]

b) Puisque K est le barycentre du système $\{(B,2);(C,-1)\}$, on écrit :

$$G = Bar\{(A,3);(B,2);(C,-1)\} = Bar\{(A,3);(K,2-1)\}, \text{ c'est-à-dire } G = Bar\{(A,3);(K,1)\}$$

Exercice n°7

1) Si K est le barycentre d'un système de points pondérés (C,1),(B,-4), alors on peut écrire :

 $\overrightarrow{KC} - 4\overrightarrow{KB} = \overrightarrow{0} \Leftrightarrow \overrightarrow{KB} + \overrightarrow{BC} - 4\overrightarrow{KB} = \overrightarrow{0} \Leftrightarrow -3\overrightarrow{KB} + \overrightarrow{BC} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{BK} + \overrightarrow{BC} = \overrightarrow{0}$, qui traduit le fait que B est le barycentre du système $\{(K,3);(C,1)\}$

2) En utilisant le barycentre partiel B du système $\{(K,3);(C,1)\}$, on écrit :

$$Bar\{(A,2);(K,3);(C,1)\} = Bar\{(A,2);(B,3+1)\} = Bar\{(A,2);(B,4)\} = Bar\{(A,1);(B,2)\}$$

Le barycentre cherché est donc le point J

3) Puisque $J = Bar\{(A,2);(K,3);(C,1)\}$, en utilisant le fait que I le barycentre des points pondérés (A,2),(C,1), on écrit $J = Bar\{(I,2+1);(K,3)\} = Bar\{(I,3);(K,3)\} = Bar\{(I,1);(K,1)\}$ donc J est le milieu de [IK].

4) En utilisant la technique des « barycentres partiels », on écrit : Si L est le milieu de [CI], alors

$$L = Bar\{(I,1); (C,1)\} = Bar\{\underbrace{(I,3)}_{\text{d'après l'énoncé}}; (C,3)\}$$

$$= Bar\{\underbrace{(A,2); (C,1)\}}_{\text{d'après l'énoncé}}; (C,3)\} = Bar\{(A,2); (C,4)\} = Bar\{(A,1); (C,2)\}$$

donc a = 1 et b = 2. De la même manière,

$$L = Bar\{(K,1);(C,1)\} = Bar\{\underbrace{(K,-3)}_{\text{d'après l'énoncé}}; \quad (C,-3)\}$$

$$= Bar\{\underbrace{(K,1);(C,1)}_{\text{d'après l'énoncé}}; \quad (C,-3)\} = Bar\{(B,-4);(C,-2)\} = Bar\{(B,2);(C,1)\}$$

$$c = 2$$
 et $d = 1$

Exercice n°8

Puisque I est le milieu de [AB], alors $I = Bar\{(A,1);(B,1)\}$

Puisque J est le milieu de [BC], alors $J = Bar\{(B,1);(C,1)\}$

Puisque K est le milieu de [CD], alors $K = Bar\{(C,1),(D,1)\}$

Puisque L est le milieu de [DA], alors $L = Bar\{(A,1); (D,1)\}$

Puisque M est le milieu de [AC], alors $M = Bar\{(A,1);(C,1)\}$

Puisque N est le milieu de [BD], alors $N = Bar\{(B,1); (D,1)\}$

Notons
$$G = Bar\{(A,1);(B,1);(C,1);(D,1)\}$$

En effectuant deux regroupements de barycentres partiels, on écrit :

$$G = Bar \left\{ \underbrace{(A,1);(B,1)}_{I = Bar\{(A,1);(B,1)\}}; \underbrace{(C,1);(D,1)}_{K = Bar\{(C,1);(D,1)\}} \right\}$$

$$= Rar \left\{ (I,2) : (K,2) \right\} = Rar \left\{ (I,2) : (K,2) \right\}$$

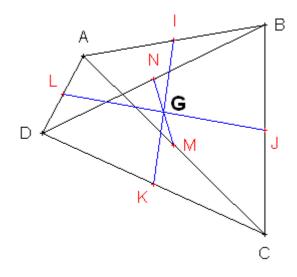
$$= Bar\{(I,2) ; (K,2)\} = Bar\{(I,1);(K,1)\}$$

donc G est le milieu de [IK].

En effectuant un deuxième regroupement, à l'aide de $M = Bar\{(A,1);(C,1)\}$ et $N = Bar\{(A,1);(C,1)\}$, on écrit que $G = Bar\{(A,1);(B,1);(C,1)\}$ = $Bar\{(M,2);(N,2)\}$ = $Bar\{(M,1);(N,1)\}$, donc que G est le milieu de [MN].

Enfin, à l'aide du regroupement $J = Bar\{(B,1);(C,1)\}$ et $L = Bar\{(A,1);(D,1)\}$, on écrit $G = Bar\{(A,1);(B,1);(C,1);(D,1)\} = Bar\{(J,2);(L,2)\} = Bar\{(J,1);(L,1)\}$, donc G est le milieu de [JL].

Les trois segments [IK], [MN] et [LJ] sont donc concourrants en leur milieu commun G.



Exercice n°9

1) Si on note G le barycentre $G = Bar\{(A,2); (B,1)\}$ (donc $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB}$) et H le barycentre $H = Bar\{(C,5); (D,-2)\}$

(donc $\overrightarrow{CH} = -\frac{2}{3}\overrightarrow{CD}$), alors pour tout point M du plan, on a

$$2\overrightarrow{MA} + \overrightarrow{MB}$$

$$=2\Big(\overrightarrow{MG}+\overrightarrow{GA}\Big)+\overrightarrow{MG}+\overrightarrow{GB}$$

$$=3\overrightarrow{MG}+\underbrace{2\overrightarrow{GA}+\overrightarrow{GB}}_{\vec{0}\ car\ G=Bar\{(A,2);(B,1)\}}=3\overrightarrow{MG}$$

et de même, pour tout point M du plan,

$$5\overrightarrow{MC} - 2\overrightarrow{MD} = 5\left(\overrightarrow{MH} + \overrightarrow{HC}\right) - 2\left(\overrightarrow{MH} + \overrightarrow{HD}\right)$$

$$=3\overrightarrow{MH}+5\overrightarrow{HC}-2\overrightarrow{HD}=3\overrightarrow{MH}+\overrightarrow{0}$$

L'égalité $\|2\overrightarrow{MA} + \overrightarrow{MB}\| = \|5\overrightarrow{MC} - 2\overrightarrow{MD}\|$ devient alors équivalente à $\|3\overrightarrow{MG}\| = \|3\overrightarrow{MH}\|$, donc à $3MG = 3MH \Leftrightarrow GM = HM$

Le point M est donc équidistant des points G et H, donc appartient à la médiatrice du segment [GH].

 Γ_1 est donc la médiatrice de [GH] (en bleu sur le dessin)

Notons I le milieu de [GH].

Alors
$$\overrightarrow{IG} = \overrightarrow{IB} + \overrightarrow{BG} = \overrightarrow{IB} + \overrightarrow{BA} + \overrightarrow{AG} = -\overrightarrow{IC} - \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AB} = -\overrightarrow{IC} - \frac{2}{3}\overrightarrow{AB} = -\overrightarrow{IC} + \frac{2}{3}\overrightarrow{CD}$$
 car $\overrightarrow{AB} = -\overrightarrow{CD}$ puisque ABCD est un rectangle. D'autre part $\overrightarrow{IH} = \overrightarrow{IC} + \overrightarrow{CH} = \overrightarrow{IC} - \frac{2}{3}\overrightarrow{CD}$. On en déduit donc que $\overrightarrow{IH} = -\overrightarrow{IG}$, donc que I est le milieu de

2) On utilise de nouveau le point $G = Bar\{(A,2); (B,1)\}$ pour écrire l'équivalence :

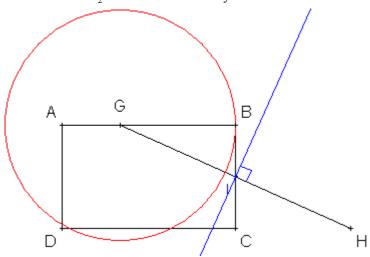
$$\|2\overrightarrow{MA} + \overrightarrow{MB}\| = 2AB \Leftrightarrow \|3\overrightarrow{MG}\| = 12 \Leftrightarrow 3GM = 12 \Leftrightarrow GM = 4$$

[GH], donc que I appartient bien à la médiatrice Γ_1 de [GH]

M appartient donc au cercle de centre G et de rayon 4.

 Γ_2 est donc le cercle de centre G et de rayon 4 (en rouge sur le dessin)

Puisque $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB}$, on en déduit que $\overrightarrow{GB} = \frac{2}{3}\overrightarrow{AB}$ donc $\|\overrightarrow{GB}\| = \|\frac{2}{3}\overrightarrow{AB}\| \Leftrightarrow BG = \frac{2}{3}AB = \frac{2}{3} \times 6 = 4$, donc M appartient donc au cercle Γ_2 de centre G et de rayon 4.



Exercice n°10 - Deux méthodes équivalentes sont envisageables :

1 méthode:

L'application des formules du cours :
$$x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}$$
 et $y_G = \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}$,

Qui se traduisent ici par
$$x_G = \frac{2 \times (-1) - 3 + 3 \times 2}{2 - 1 + 3} = \frac{1}{4}$$
 et $y_G = \frac{2 \times 2 - 1 + 3 \times 4}{2 - 1 + 3} = \frac{15}{4}$

2^{ème} méthode : Le retour à la définition générale :

Le point G barycentre du système (A;2), (B;-1) et (C;3) vérifie donc $2\overrightarrow{GA} - \overrightarrow{GB} + 3\overrightarrow{GC} = \overrightarrow{0}$.

Si on note $G(x_G; y_G)$, on exprime en fonction de x_G et y_G les coordonnées des vecteurs :

$$\overline{GA} \Big|_{y_A - y_G = 2 - y_G}^{x_A - x_G = -1 - x_G} \text{ donc } 2\overline{GA} \Big|_{2(2 - y_G) = 4 - 2y_G}^{2(-1 - x_G) = -2 - 2x_G}; \overline{GB} \Big|_{y_B - y_G = 1 - y_G}^{x_B - x_G = 3 - x_G} \text{ donc } -\overline{GB} \Big|_{-(1 - y_G) = y_G - 1}^{-(3 - x_G) = x_G - 3}$$

$$|\overrightarrow{GC}|_{y_C - y_G = 4 - y_G}^{x_C - x_G}| = 2 - x_G \text{ done } 3|\overrightarrow{GC}|_{3(4 - y_G) = 12 - 3y_G}^{3(2 - x_G) = 6 - 3x_G}$$

On arrive ainsi aux coordonnées de $2\overrightarrow{GA} - \overrightarrow{GB} + 3\overrightarrow{GC}$:

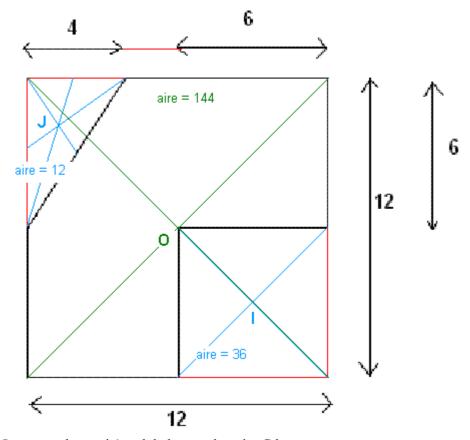
$$2\overrightarrow{GA} - \overrightarrow{GB} + 3\overrightarrow{GC}\Big|_{\substack{4-2y_G + y_G - 1 + 12 - 3y_G = -4y_G + 15}}^{\substack{-2-2x_G + x_G - 3 + 6 - 3x_G = -4x_G + 1}}$$

Puisque $2\overrightarrow{GA} - \overrightarrow{GB} + 3\overrightarrow{GC} = \overrightarrow{0}$, et que le vecteur nul possède deux coordonnées...nulles !, on obtient les deux équations $-4x_G + 1 = 0$ et $-4y_G + 15 = 0$ grâce auxquelles on retrouve bien $x_G = \frac{1}{4}$ et $y_G = \frac{15}{4}$

Exercice n°11

Deux « zones » ont évidé le « grand carré » d'aire 144 unités d'aire, de centre de gravité O (intersection des diagonales en vert) : - Un triangle d'aire $\frac{4 \times 6}{2}$ = 12 unités d'aires, de centre de gravité J (intersection des médianes en bleu)

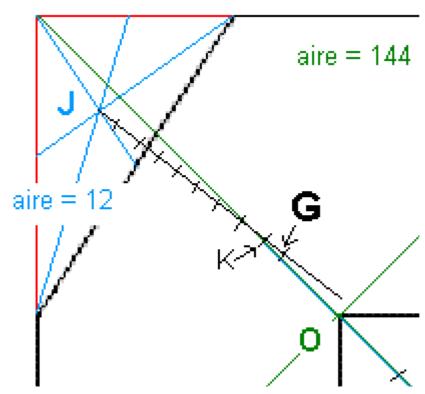
- Un « petit carré » d'aire 36 unités d'aires, de centre de gravité I (intersection des diagonales en bleu)



Le centre de gravité « global » sera le point G barycentre :

$$G = Bar\{(O,144); (J,-12); (I,-36)\} = Bar\{(O,12); (J,-1); (I,-3)\}$$

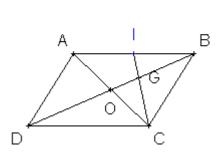
En introduisant le barycentre partiel $K = Bar\{(O,12);(I,-3)\} = Bar\{(O,4);(I,-1)\} \Leftrightarrow \overrightarrow{OK} = -\frac{1}{3}\overrightarrow{OI}$ (construction : figure ci-dessous), on se retrouve avec $G = Bar\{(J,-1);(K,9)\} \Leftrightarrow \overrightarrow{JG} = \frac{9}{8}\overrightarrow{JK}$



Exercices de synthèse :

Exercice n°12

1) Si on note O l'intersection des diagonales du parralélogramme, O est le milieu de [AC]. Le segment [BD] (ou [BO]) est donc, dans le triangle ABC, la médiane issue de B. De même, le segment [BI]est la médiane issue de C, puisque I est le milieu de [AB]. Le point G intersection de (DB) et (CI) est donc le centre de gravité (ou encore isobarycentre) du triangle ABC. Il vérifie donc $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$



Κ

2) a) En regroupant les points A et B par l'intermédiaire de leur milieu I, on écrit : $K = Bar\{(A,1);(B,1);(C,-1)\} = Bar\{(I,2);(C,-1)\} \Leftrightarrow \overrightarrow{IK} = -\overrightarrow{IC}$, on en déduit que I est le milieu de [KC], d'où la construction du point K (en rouge) :

b) En utilisant la décomposition $G = Bar\{(A,1);(B,1);(C,1)\}$, puis en regroupant les coefficients du point C, on obtient : $Bar\{(G,3);(C,-2)\} = Bar\{(A,1);(B,1);(C,1);(C,-2)\} = Bar\{(A,1);(B,1);(C,1-2)\} = Bar\{(A,1);(B,1);(C,-1)\} = K$ 3) On écrit

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{GA} + \overrightarrow{AC} = \overrightarrow{0}$$

$$\Leftrightarrow 3\overrightarrow{GA} + \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{AC} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{GA} + 2\overrightarrow{AC} + \underbrace{\overrightarrow{DA}}_{\substack{\overrightarrow{CB} = \overrightarrow{DA} \\ \text{car ABCD} \\ \text{est un} \\ \text{parallélogramme}}} = \overrightarrow{0}$$

On en déduit $-3\overrightarrow{AG} + 2\overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{0}$, ou encore, en multipliant par -1: $3\overrightarrow{AG} - 2\overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{0}$ donc A est le barycentre des points pondérés (D; 1), (G; 3) et (C; -2)

b) Puisque $A = Bar\{(D,1);(G,3);(C,-2)\}$, et puisque $K = Bar\{(G,3);(C,-2)\}$ (question 2b), on en déduit que $A = Bar\{(D,1);(K,3-2)\} = Bar\{(D,1);(K,1)\}$ donc A est le milieu du segment [DK]

4) En utilisant les barycentres $A = Bar\{(D,1); (G,3); (C,-2)\}$ et $I = Bar\{(A,1); (B,1)\}$ milieu de [AB], on écrit l'équivalence $\|\overrightarrow{MD} + 3\overrightarrow{MG} - 2\overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\| \Leftrightarrow \|2\overrightarrow{MA}\| = \|2\overrightarrow{MI}\| \Leftrightarrow AM = IM$.

M appartient donc à la médiatrice du segment [AI]

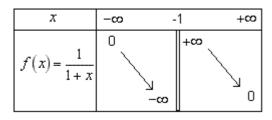
5) a) Le barycentre du système (D, m), (G; 3) et (C; -2) existe si et seulement si la somme des coefficients du système est non nulle, c'est-à-dire si et seulement si $1+m \neq 0 \Leftrightarrow m \neq -1$. Le barycentre du système (D, m), (G; 3) et (C; -2) existe donc pour tout $m \in]-\infty; -1[\cup]-1; +\infty[$

b) Pour tout $m \in]-\infty; -1[\cup]-1; +\infty[$, si on note $I_m = Bar\{(D,m); (G,3); (C,-2)\}$, on a donc $m\overrightarrow{I_mD} + 3\overrightarrow{I_mG} - 2\overrightarrow{I_mC} = \vec{0} \Leftrightarrow m\overrightarrow{I_mD} + 3\left(\overrightarrow{I_mD} + \overrightarrow{DG}\right) - 2\left(\overrightarrow{I_mD} + \overrightarrow{DC}\right) = \vec{0}$ $\Leftrightarrow (m+1)\overrightarrow{I_mD} + 3\overrightarrow{DG} - 2\overrightarrow{DC} = \vec{0} \Leftrightarrow (m+1)\overrightarrow{I_mD} + 3\left(\overrightarrow{DK} + \overrightarrow{KG}\right) - 2\left(\overrightarrow{DK} + \overrightarrow{KC}\right) = \vec{0}$ $\Leftrightarrow (m+1)\overrightarrow{I_mD} + \overrightarrow{DK} + 3\overrightarrow{KG} - 2\overrightarrow{KC} = \vec{0}$

Ainsi
$$(m+1)\overrightarrow{I_mD} = -\overrightarrow{DK} \Leftrightarrow \overrightarrow{DI_m} = \frac{1}{m+1}\overrightarrow{DK}$$

c) Si on note $f(x) = \frac{1}{1+x}$, défini sur $\mathbb{R} \setminus \{-1\}$, on calcule $f(x) = \frac{-1}{(1+x)^2} < 0$ donc f est strictement décroissante sur $]-\infty;-1[$ et sur $]-1;+\infty[$. De plus $\lim_{x\to\pm\infty} f(x)=0$, $\lim_{x\to-1} f(x)=-\infty$ et $\lim_{x\to-1} f(x)=+\infty$.

D'où le tableau de variations :



d) D'après le tableau de variations, l'image de l'ensemble $]-\infty;-1[\,\cup\,]-1;+\infty[$ est l'ensemble $]-\infty;0[\,\cup\,]0;+\infty[$. Ainsi le coefficient de colinéarité $\frac{1}{m+1}$ existant entre $\overrightarrow{DI_m}$ et \overrightarrow{DK} parcourant tout l'ensemble $]-\infty;0[\,\cup\,]0;+\infty[$, le point I_m parcourt toute la droite (DK), sauf le point D

Exercice n°13

Dans le plan (P), on considère un triangle ABC isocèle en A, de hauteur [AH], telle que AH=BC=4, l'unité choisie étant le centimètre.

- 1) On introduit le milieu H de [BC] (puisque dans un triangle isocèle en A, la hauteur issue de A est aussi médiane issue de A), pour conclure que $G = Bar\{(A,2);(B,1);(C,1)\} = Bar\{(A,2);(H,2)\} = Bar\{(A,1);(H,1)\}$ est le milieu de [AH].
- 2) Pour tout point M,

$$\vec{V} = 2\vec{M}\vec{A} - \vec{M}\vec{B} - \vec{M}\vec{C} = 2\vec{M}\vec{A} - \left(\vec{M}\vec{A} + \vec{A}\vec{B}\right) - \left(\vec{M}\vec{A} + \vec{A}\vec{C}\right) = 2\vec{M}\vec{A} - \vec{M}\vec{A} - \vec{M}\vec{A} - \vec{A}\vec{B} - \vec{A}\vec{C} = -\left(\vec{A}\vec{B} + \vec{A}\vec{C}\right) = -2\vec{A}\vec{H}$$

$$donc \|\vec{V}\| = \|2\vec{M}\vec{A} - \vec{M}\vec{B} - \vec{M}\vec{C}\| = \|-2\vec{A}\vec{H}\| = 2AH = 8$$

3) En utilisant le barycentre $G = Bar\{(A,2);(B,1);(C,1)\}$, on écrit l'équivalence :

$$\|2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{V}\| \Leftrightarrow \|4\overrightarrow{MG}\| = 8 \Leftrightarrow GM = 2$$
. M parcourt donc le cercle de centre G et de rayon 2

- 4) a) Le barycentre G_n du système de points pondérés $\{(A,2);(B,n);(C,n)\}$ existe quel que soit l'entier naturel n car la somme des coefficients vaut 2+n qui ne s'annule pas si n est un entier naturel
- b) En introduisant le milieu H de [BC], on écrit $G_n = Bar\{(A,2);(B,n);(C,n)\} = Bar\{(A,2);(H,2n)\}$ donc

$$\overrightarrow{AG_n} = \frac{2n}{2+2n}\overrightarrow{AH} = \frac{n}{1+n}\overrightarrow{AH}$$
. Comme pour tout $n \in \mathbb{N}$, $\frac{n}{1+n} < 1$, le coefficient de colinéarité entre $\overrightarrow{AG_n}$ et \overrightarrow{AH} étant un réel compris entre 0 et 1, on peut affirmer que G_n appartient au segment [AH].

c) En introduisant le barycentre $G_n = Bar\{(A,2); (B,n); (C,n)\}$, on écrit l'équivalence :

$$\|2\overrightarrow{MA} + n\overrightarrow{MB} + n\overrightarrow{MC}\| = n\|\overrightarrow{V}\| \Leftrightarrow \|(2+2n)\overrightarrow{MG_n}\| = 8n \Leftrightarrow G_nM = \frac{8n}{2+2n} = \frac{4n}{1+n}$$

Le point M parcourt donc le cercle Γ_n de centre G_n et de rayon $\frac{4n}{1+n}$.

Le point A appartient à Γ_n car l'égalité $\|2\overline{MA} + n\overline{MB} + n\overline{MC}\| = n\|\vec{V}\|$ est vérifiée si on remplace M par A.

En effet d'une part
$$\|2\overrightarrow{AA} + n\overrightarrow{AB} + n\overrightarrow{AC}\| = \|n(\overrightarrow{AB} + \overrightarrow{AC})\| = n\|\overrightarrow{AB} + \overrightarrow{AC}\| = n\|2\overrightarrow{AH}\| = 8n$$
, et d'autre part $n\|\overrightarrow{V}\| = 8n$.

D'où l'égalité, qui prouve que le point A appartient à Γ_n .

- d) L'égalité $\overrightarrow{AG_n} = \frac{n}{1+n} \overrightarrow{AH}$ implique que $AG_n = \frac{4n}{1+n}$
- 5) $\lim_{n\to+\infty} AG_n = \lim_{n\to+\infty} \frac{4n}{1+n} = 4$ et G_n appartenant au segment [AH] nous permettent de conclure que lorsque n tend vers $+\infty$, le point G_n se rapproche indéfiniment (tend vers) du point H.

Exercice n°14

1)
$$A_1$$
 le barycentre de $(A_0, 1)$ et $(B_0, 4)$, donc $a_1 = \frac{1a_0 + 4b_0}{5} = \frac{8}{5}$

$$B_1$$
 le barycentre de $(A_0,3)$ et $(B_0,2)$, donc $b_1 = \frac{3a_0 + 2b_0}{5} = -\frac{6}{5}$

On obtient donc:

2)
$$A_{n+1}$$
 est le barycentre de $(A_n, 1)$ et $(B_n, 4)$ donc $a_{n+1} = \frac{a_n + 4b_n}{5} = \frac{1}{5}(a_n + 4b_n)$

$$B_{n+1}$$
 est le barycentre de $(A_n, 3)$ et $(B_n, 2)$ donc $b_{n+1} = \frac{3a_n + 2b_n}{5} = \frac{1}{5}(3a_n + 2b_n)$

3) a) Initialisation: On vérifie que :
$$3a_0 + 4b_0 = 3 \times (-4) + 4 \times 3 = 0$$

<u>Hérédité</u>: On considère que pour un entier naturel n, $3a_n + 4b_n = 0$

On calcule alors:

$$3a_{n+1} + 4b_{n+1} = 3 \times \frac{1}{5} (a_n + 4b_n) + 4 \times \frac{1}{5} (3a_n + 2b_n) = \frac{3a_n + 12b_n + 12a_n + 8b_n}{5} = \frac{15a_n + 20b_n}{5} = 3a_n + 4b_n$$

Or $3a_n + 4b_n = 0$ d'après l'hypothèse de récurrence.

Conclusion

Pour
$$n \in \mathbb{N}$$
, $3a_n + 4b_n = 0$

b) Puisque pour tout
$$n \in \mathbb{N}$$
, $3a_n + 4b_n = 0$, alors $b_n = -\frac{3}{4}a_n$ et $a_n = -\frac{4}{3}b_n$.

Ainsi, l'égalité
$$a_{n+1} = \frac{1}{5}(a_n + 4b_n)$$
 devient $a_{n+1} = \frac{1}{5}(a_n + 4 \times (-\frac{3}{4}a_n)) = \frac{1}{5}(a_n - 3a_n) = -\frac{2}{5}a_n$

L'égalité
$$b_{n+1} = \frac{1}{5} (3a_n + 2b_n)$$
 devient $b_{n+1} = \frac{1}{5} (3 \times (-\frac{4}{3}b_n) + 2b_n) = \frac{1}{5} (-4b_n + 2b_n) = -\frac{2}{5}b_n$

4) a) La suite a est donc géométrique de raison $-\frac{2}{5}$ et de premier terme $a_0 = -4$. Ainsi, pour tout entier $n \in \mathbb{N}$,

$$a_n = a_0 \times \left(-\frac{2}{5}\right)^n = -4 \times \left(-\frac{2}{5}\right)^n.$$

De même, pour tout $n \in \mathbb{N}$, $b_n = 3 \times \left(-\frac{2}{5}\right)^n$.

- b) La raison des suites géométriques a et b appartient à l'intervalle]-1 ;1[, donc $\lim_{n\to+\infty}a_n=0$ et $\lim_{n\to+\infty}b_n=0$
- c) Lorsque n tend vers $+\infty$, les points A_n et B_n se rapprochent aussi près que l'on veut de l'origine O de la droite graduée.